Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^2 x\ d x\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1 - \cos2x}{2} dx\]
\[ = \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 - \cos2x \right)dx\]
\[ = \frac{1}{2} \left[ x - \frac{\sin2x}{2} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{1}{2}\left( \frac{\pi}{2} - 0 + \frac{\pi}{2} - 0 \right)\]
\[ = \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`