Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) d x . Then, \]
\[Let \sin x = t . Then, \cos x dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 2t \tan^{- 1} t dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - 2 \int_0^1 \frac{t^2}{1 + t^2} dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - 2 \int_0^1 \left( \frac{1 + t^2}{1 + t^2} - \frac{1}{1 + t^2} \right) dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2 \tan^{- 1} t}{2} \right]_0^1 - \left[ t - \tan^{- 1} t + \right]_0^1 \]
\[ \Rightarrow I = 1 \tan^{- 1} 1 - 0 - 1 + \tan^{- 1} 1 + 0\]
\[ \Rightarrow I = \frac{\pi}{4} - 1 + \frac{\pi}{4}\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Evaluate :
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(n) is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Find: `int logx/(1 + log x)^2 dx`