Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\int_0^\frac{\pi}{4} \tan xdx\]
\[ = \left.{\log\sec\ x}\right|_0^\frac{\pi}{4} \]
\[ = \log\sec\frac{\pi}{4} - \log\sec0\]
\[ = \log\sqrt{2} - \log1\]
\[ = \log 2^\frac{1}{2} - 0\]
\[ = \frac{1}{2}\log2\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Prove that:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
Γ(1) is
`int x^3/(x + 1)` is equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`