Advertisements
Advertisements
Question
Evaluate each of the following integral:
Solution
\[\int_0^\frac{\pi}{4} \tan xdx\]
\[ = \left.{\log\sec\ x}\right|_0^\frac{\pi}{4} \]
\[ = \log\sec\frac{\pi}{4} - \log\sec0\]
\[ = \log\sqrt{2} - \log1\]
\[ = \log 2^\frac{1}{2} - 0\]
\[ = \frac{1}{2}\log2\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
`int_0^(2a)f(x)dx`
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
Γ(1) is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Find: `int logx/(1 + log x)^2 dx`