English

Π / 2 ∫ 0 1 1 + Cot 3 X D X is Equal to (A) 0 (B) 1 (C) π/2 (D) π/4 - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

Options

  • 0

  • 1

  • π/2

  • π/4

MCQ

Solution

 π/4

 

We have
\[ I = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 x} d x . . . . . \left( 1 \right)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 \left( \frac{\pi}{2} - x \right)} d x \]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 x} d x . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + co t^3 x} + \frac{1}{1 + \tan^3 x} \right] d x\]

\[= \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^3 x + 1 + co t^3 x}{\left( 1 + co t^3 x \right)\left( 1 + \tan^3 x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + co t^3 x \tan^3 x} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + 1} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{2 + \tan^3 x + co t^3 x} \right] dx\]
\[ = \int_0^\frac{\pi}{2} [1]dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 119]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 31 | Page 119

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


`int_0^(2a)f(x)dx`


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`Γ (9/2)`


Choose the correct alternative:

If n > 0, then Γ(n) is


Choose the correct alternative:

`Γ(3/2)`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×