मराठी

Π / 2 ∫ 0 1 1 + Cot 3 X D X is Equal to (A) 0 (B) 1 (C) π/2 (D) π/4 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

पर्याय

  • 0

  • 1

  • π/2

  • π/4

MCQ

उत्तर

 π/4

 

We have
\[ I = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 x} d x . . . . . \left( 1 \right)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 \left( \frac{\pi}{2} - x \right)} d x \]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 x} d x . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + co t^3 x} + \frac{1}{1 + \tan^3 x} \right] d x\]

\[= \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^3 x + 1 + co t^3 x}{\left( 1 + co t^3 x \right)\left( 1 + \tan^3 x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + co t^3 x \tan^3 x} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + 1} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{2 + \tan^3 x + co t^3 x} \right] dx\]
\[ = \int_0^\frac{\pi}{2} [1]dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 31 | पृष्ठ ११९

संबंधित प्रश्‍न

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

Γ(1) is


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×