Advertisements
Advertisements
प्रश्न
पर्याय
0
1
π/2
π/4
उत्तर
π/4
We have
\[ I = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 x} d x . . . . . \left( 1 \right)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 \left( \frac{\pi}{2} - x \right)} d x \]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 x} d x . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + co t^3 x} + \frac{1}{1 + \tan^3 x} \right] d x\]
\[= \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^3 x + 1 + co t^3 x}{\left( 1 + co t^3 x \right)\left( 1 + \tan^3 x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + co t^3 x \tan^3 x} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + 1} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{2 + \tan^3 x + co t^3 x} \right] dx\]
\[ = \int_0^\frac{\pi}{2} [1]dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Prove that:
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(1) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.