Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
पर्याय
- \[2 \int\limits_0^a f\left( x \right) dx\]
0
\[\int\limits_0^a f\left( x \right) dx + \int\limits_0^a f\left( 2a - x \right) dx\]
- \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^{2a} f\left( 2a - x \right) dx\]
उत्तर
\[\text{According to the additivity property of integrals}, \]
\[ \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx, where\ a < c < b\]
using this property
\[ \int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^{2a} f(x)dx . . . . . . (1)\]
\[\text{Now, consider the integral}, \int_0^{2a} f(x)dx\]
\[\text{Let }x = 2a - t . Then, dx = d(2a - t) \Rightarrow dx = - dt\]
\[\text{Also, }x = a \Rightarrow t = a\ and\ x\ = 2a \Rightarrow t = 0\]
\[\text{Therefore, }\int_a^{2a} f(x)dx = - \int_a^0 f(2a - t)dt\]
\[ \Rightarrow \int_a^{2a} f(x)dx = \int_0^a f(2a - t)dt\]
\[ \Rightarrow \int_a^{2a} f(x)dx = \int_0^a f(2a - x)dx\]
\[\text{Substituting this in equation (1) we get}, \]
\[ \int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^a f(2a - x)dx\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Prove that:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Find: `int logx/(1 + log x)^2 dx`