मराठी

2 a ∫ 0 F ( X ) D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to

पर्याय

  • \[2 \int\limits_0^a f\left( x \right) dx\]
  •  0

  • \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^a f\left( 2a - x \right) dx\]

  • \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^{2a} f\left( 2a - x \right) dx\]
MCQ

उत्तर

\[\int\limits_0^a f\left( x \right) dx + \int\limits_0^a f\left( 2a - x \right) dx\]

\[\text{According to the additivity property of integrals}, \]
\[ \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx, where\ a < c < b\]
using this property
\[ \int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^{2a} f(x)dx . . . . . . (1)\]
\[\text{Now, consider the integral}, \int_0^{2a} f(x)dx\]
\[\text{Let }x = 2a - t . Then, dx = d(2a - t) \Rightarrow dx = - dt\]
\[\text{Also, }x = a \Rightarrow t = a\ and\ x\ = 2a \Rightarrow t = 0\]
\[\text{Therefore, }\int_a^{2a} f(x)dx = - \int_a^0 f(2a - t)dt\]
\[ \Rightarrow \int_a^{2a} f(x)dx = \int_0^a f(2a - t)dt\]
\[ \Rightarrow \int_a^{2a} f(x)dx = \int_0^a f(2a - x)dx\]
\[\text{Substituting this in equation (1) we get}, \]
\[ \int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^a f(2a - x)dx\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 38 | पृष्ठ १२०

संबंधित प्रश्‍न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×