Advertisements
Advertisements
प्रश्न
पर्याय
π/2
π/4
π/6
π/8
उत्तर
\[\pi\]\8
\[Let, I = \int_0^1 \sqrt{x\left( 1 - x \right)} d x\]
\[ = \int_0^1 \sqrt{x - x^2} d x\]
\[ = \int_0^1 \sqrt{\frac{1}{4} - \left( x^2 - x + \frac{1}{4} \right)} d x\]
\[ = \int_0^1 \sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2} dx\]
\[ = \left[ \frac{\left( x - \frac{1}{2} \right)}{2}\sqrt{x - x^2} + \frac{1}{2} \times \frac{1}{4} \sin^{- 1} \left( 2x - 1 \right) \right]_0^1 \]
\[ = \frac{1}{8} \left[ \sin^{- 1} \left( 1 \right) - \sin^{- 1} \left( - 1 \right) \right]_0^1 \]
\[ = \frac{1}{8}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ = \frac{\pi}{8}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f is an integrable function, show that
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(1) is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`