मराठी

1 ∫ 0 1 1 + X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

उत्तर

\[Let I = \int_0^1 \frac{1}{1 + x^2} d x . Then, \]
\[I = \left[ \tan^{- 1} x \right]_0^1 \]
\[ \Rightarrow I = \tan^{- 1} 1 - \tan^{- 1} 0\]
\[ \Rightarrow I = \frac{\pi}{4} - 0\]
\[ \Rightarrow I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 4 | पृष्ठ १६

संबंधित प्रश्‍न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^2 \left[ x \right] dx .\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

If n > 0, then Γ(n) is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×