Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\int_e^{e^2} \frac{1}{x\log x}dx\]
\[ = \int_e^{e^2} \frac{\frac{1}{x}}{\log x}dx\]
\[ = \left.\log\left( \log x \right)\right|_e^{e^2} ...............\left[ \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log f\left( x \right) + C \right]\]
\[ = \log\left( \log e^2 \right) - \log\left( \log e \right)\]
\[ = \log\left( 2\log e \right) - \log\left( \log e \right) \]
\[ = \log2 - \log1 ................\left( \log e = 1 \right)\]
\[ = \log2 - 0\]
\[ = \log2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`