Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\infty \frac{1}{a^2 + b^2 x^2} d x\ . Then, \]
\[I = \frac{1}{a^2} \int_0^\infty \frac{1}{1 + \frac{b^2 x^2}{a^2}} d x\]
\[ \Rightarrow I = \frac{1}{a^2} \int_0^\infty \frac{1}{1 + \left( \frac{bx}{a} \right)^2} d x\]
\[ \Rightarrow I = \frac{a}{b a^2} \left[ \tan^{- 1} \left( \frac{bx}{a} \right) \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{ab}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{2ab}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: