Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi \frac{1}{3 + 2 \sin x + \cos x} d x . Then, \]
\[I = \int_0^\pi \frac{1}{3 + 2\left( \frac{2 \tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{2 \tan^2 \frac{x}{2} + 4 \tan \frac{x}{2} + 4} dx\]
\[Let \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \pi, t = \infty \]
\[ \therefore I = \int_0^\infty \frac{2 dt}{2 t^2 + 4t + 4}\]
\[ \Rightarrow I = \int_0^\infty \frac{dt}{\left( t + 1 \right)^2 + 1}\]
\[ \Rightarrow I = \left[ \tan^{- 1} \left( t + 1 \right) \right]_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{2} - \frac{\pi}{4}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`Γ (9/2)`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`