Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} x \cos^2 x\ d x\]
\[Let f\left( x \right) = x \cos^2 x\]
\[ \Rightarrow f\left( - x \right) = \left( - x \right) \cos^2 \left( - x \right)\]
\[ = - x \cos^2 x\]
\[ \therefore f\left( - x \right) = - f\left( x \right)\]
\[i . e . , f\left( x \right) \text{is odd function}\]
\[\text{We know that} \int_{- a}^a f\left( x \right) d x = 0 , \text{if }f\left( x \right) \text{is odd function} . \]
\[ \therefore I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} x \cos^2 x\ d x = 0\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int x^3/(x + 1)` is equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`