Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_4^9 \frac{\sqrt{x}}{\left( 30 - x^\frac{3}{2} \right)^2} d x . Then, \]
\[Let \left( 30 - x^\frac{3}{2} \right) = t . Then, - \frac{3}{2}\sqrt{x} dx = dt\]
\[When\, x = 4, t = 22\ and\ x\ = 9, t = 3\]
\[ \therefore I = \int_{22}^3 - \frac{2}{3}\frac{1}{t^2} dt\]
\[ \Rightarrow I = \frac{2}{3} \left[ \frac{1}{t} \right]_{22}^3 \]
\[ \Rightarrow I = \frac{2}{3}\left( \frac{1}{3} - \frac{1}{22} \right)\]
\[ \Rightarrow I = \frac{19}{99}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^4 x dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
If n > 0, then Γ(n) is
Choose the correct alternative:
`Γ(3/2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.