Advertisements
Advertisements
प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
उत्तर
\[I = \int_{- a}^a f\left( x^2 \right) d x\]
\[Here\ g\left( x \right) = f( x^2 )\]
\[ \Rightarrow g\left( - x \right) = f \left( - x \right)^2 = f( x^2 ) = g\left( x \right) i.e, g\left( x \right) \text{is even} \]
Therefore
\[I = 2 \int_0^a f\left( x^2 \right) d x .............\left[\text{Using }\int_{- a}^a g\left( x \right) d x = 2 \int_0^a g\left( x \right) dx \text{ when }g\left( x \right) \text{is even} \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate :
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`