Advertisements
Advertisements
प्रश्न
If f(2a − x) = −f(x), prove that
उत्तर
Using additive property
\[I = \int_0^a f\left( x \right) d x + \int_a^{2a} f\left( x \right) d x\]
\[\text{Consider the integral} \int_a^{2a} f\left( x \right) d x\]
\[\text{Let }x = 2a - t, \text{Then }dx = - dt\]
\[\text{When }x = a, t = a\text{ and }x = 2a, t = 0\]
Therefore,
\[ \int_a^{2a} f\left( x \right) d x = - \int_a^0 f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - x \right) dx ................\left( \text{changing the variable} \right)\]
\[\text{We have }f\left( 2a - x \right) = - f\left( x \right)\]
Therefore,
\[I = \int_0^a f\left( x \right) d x - \int_0^a f\left( x \right) d x = 0\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.