Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\frac{\pi}{2} \frac{1}{a\cos x + b \sin x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{a\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + b\left( \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{a - a \tan^2 \frac{x}{2} + 2b \tan\frac{x}{2}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{se c^2 \frac{x}{2}}{a - ata n^2 \frac{x}{2} + 2b tan\frac{x}{2}}dx\]
\[Let\ \tan\frac{x}{2} = t, Then, \frac{1}{2}se c^2 \frac{x}{2}dx = dt\]
\[When\ x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[I = \int_0^1 \frac{2dt}{a - {at}^2 + 2bt}\]
\[ = \int_0^1 \frac{2dt}{- a\left[ t^2 - \frac{2bt}{a} - 1 \right]}\]
\[ = \frac{2}{a} \int_0^1 \frac{dt}{- \left[ \left( t - \frac{b}{a} \right)^2 - 1 - \frac{b^2}{a^2} \right]}\]
\[ = \frac{2}{a} \int_0^1 \frac{dt}{\left( \frac{b^2}{a^2} + 1 \right) - \left( t - \frac{b}{a} \right)^2}\]
\[ = \frac{2}{a}\left[ \frac{1}{2\sqrt{\frac{a^2 + b^2}{a^2}}} \left( \log\left| \frac{\sqrt{\frac{a^2 + b^2}{a^2}} + \left( t - \frac{b}{a} \right)}{\sqrt{\frac{a^2 + b^2}{a^2}} - \left( t - \frac{b}{a} \right)} \right| \right)_0^1 \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
If f is an integrable function, show that
Evaluate each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`