Advertisements
Advertisements
प्रश्न
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
उत्तर
\[\int_1^2 \frac{x + 3}{x\left( x + 2 \right)} d x\]
\[ = \int_1^2 \frac{x + 2 + 1}{x\left( x + 2 \right)} d x\]
\[ = \int_1^2 \frac{1}{x}dx + \int_1^2 \frac{1}{x\left( x + 2 \right)}dx\]
\[ = \int_1^2 \frac{1}{x}dx + \frac{1}{2} \int_1^2 \frac{\left( x + 2 \right) - x}{x\left( x + 2 \right)}dx\]
\[ = \int_1^2 \frac{1}{x}dx + \frac{1}{2} \int_1^2 \frac{1}{x}dx - \frac{1}{2} \int_1^2 \frac{1}{x + 2}dx\]
\[ = \frac{3}{2} \int_1^2 \frac{1}{x}dx - \frac{1}{2} \int_1^2 \frac{1}{x + 2}dx\]
\[ = \frac{3}{2} \left[ \log x \right]_1^2 - \frac{1}{2} \left[ \log\left( x + 2 \right) \right]_1^2 \]
\[ = \frac{3}{2}\log2 - \frac{1}{2}\log4 + \frac{1}{2}\log3\]
\[ = \frac{3}{2}\log2 - \log2 + \frac{1}{2}\log3\]
\[ = \frac{1}{2}\log2 + \frac{1}{2}\log3\]
\[ = \frac{1}{2}\log6\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Solve each of the following integral:
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`