Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{x}{x + 1} d x . Then, \]
\[I = \int_0^1 1 - \frac{1}{x + 1} d x\]
\[ \Rightarrow I = \left[ x - \log \left( x + 1 \right) \right]_0^1 \]
\[ \Rightarrow I = 1 - \log 2 - (0 - \log 1)\]
\[ \Rightarrow I = \log e - \log 2\]
\[ \Rightarrow I = \log \frac{e}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Choose the correct alternative:
Γ(n) is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^3/(x + 1)` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.