मराठी

1 ∫ 0 X X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

उत्तर

\[Let\ I = \int_0^1 \frac{x}{x + 1} d x . Then, \]
\[I = \int_0^1 1 - \frac{1}{x + 1} d x\]
\[ \Rightarrow I = \left[ x - \log \left( x + 1 \right) \right]_0^1 \]
\[ \Rightarrow I = 1 - \log 2 - (0 - \log 1)\]
\[ \Rightarrow I = \log e - \log 2\]
\[ \Rightarrow I = \log \frac{e}{2}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 9 | पृष्ठ १६

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Choose the correct alternative:

Γ(n) is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int x^3/(x + 1)` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×