Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\infty e^{- x} d\ x\ . Then, \]
\[I = \left[ - e^{- x} \right]_0^\infty \]
\[ \Rightarrow I = - e^{- \infty} + e^0 \]
\[ \Rightarrow I = 0 + 1\]
\[ \Rightarrow I = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`