Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = - 1, b = 1, f\left( x \right) = x + 3, h = \frac{1 + 1}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_{- 1}^1 \left( x + 3 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( - 1 \right) + f\left( - 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ - 1 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( - 1 + 3 \right) + \left( - 1 + h + 3 \right) + . . . . . . . . . . . . . . . + \left\{ - 1 + \left( n - 1 \right)h + 3 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + h\left\{ 1 + 2 + 3 . . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ 2n + n - 1 \right]\]
\[ = \lim_{n \to \infty} 2\left( 3 - \frac{1}{n} \right)\]
\[ = 6\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f is an integrable function, show that
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.