Advertisements
Advertisements
प्रश्न
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
उत्तर
Put x2 = t
Then 2x dx = dt.
Now I = `int (x^3"d"x)/(x^4 + 3x^2 + 2)`
= `1/2 int "tdt"/("t"^2 + 3"t" + 2)`
Consider `"t"/("t"^2 + 3"t" + 2) = "A"/("t" + 1) + "B"/("t" + 2)`
Comparing coefficient, we get A = –1, B = 2.
Then I = `1/2[2 int "dt"/("t" + 2) - int "dt"/("t" + 1)]`
= `1/2 [2log|"t" + 2| - log|"t" + 1|]`
= `log|(x^2 + 2)/sqrt(x^2 + 1)| + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`