Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
उत्तर
\[Let, I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 \left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + co t^3 x} d x ................(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + \tan^3 x} + \frac{1}{1 + co t^3 x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan^3 x + co t^3 x}{\left( 1 + \tan^3 x \right)\left( 1 + co t^3 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan^3 x + co t^3 x}{2 + \tan^3 x + co t^3 x}dx\]
\[ = \int_0^\frac{\pi}{2} dx \]
\[ = \left( x \right)_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence, I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(1) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.