मराठी

1 ∫ 0 1 √ 1 + X − √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

उत्तर

\[Let I = \int_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} d x . Then, \]
\[I = \int_0^1 \left( \frac{1}{\sqrt{1 + x} - \sqrt{x}} \times \frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} + \sqrt{x}} \right) d x\]
\[ \Rightarrow I = \int_0^1 \frac{\sqrt{1 + x} + \sqrt{x}}{1 + x - x} d x\]
\[ \Rightarrow I = \int_0^1 \left( \sqrt{1 + x} + \sqrt{x} \right) dx\]
\[ \Rightarrow I = \left[ \frac{2}{3} \left( 1 + x \right)^\frac{3}{2} + \frac{2}{3} x^\frac{3}{2} \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3} \times 2\sqrt{2} + \frac{2}{3} - \frac{2}{3}\]
\[ \Rightarrow I = \frac{4\sqrt{2}}{3}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 54 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×