Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} d x . Then, \]
\[I = \int_0^1 \left( \frac{1}{\sqrt{1 + x} - \sqrt{x}} \times \frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} + \sqrt{x}} \right) d x\]
\[ \Rightarrow I = \int_0^1 \frac{\sqrt{1 + x} + \sqrt{x}}{1 + x - x} d x\]
\[ \Rightarrow I = \int_0^1 \left( \sqrt{1 + x} + \sqrt{x} \right) dx\]
\[ \Rightarrow I = \left[ \frac{2}{3} \left( 1 + x \right)^\frac{3}{2} + \frac{2}{3} x^\frac{3}{2} \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3} \times 2\sqrt{2} + \frac{2}{3} - \frac{2}{3}\]
\[ \Rightarrow I = \frac{4\sqrt{2}}{3}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f is an integrable function, show that
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.