Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \]
\[\text{Integrating by parts, we get}\]
\[I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2} \int_0^\pi e^{2x} \cos \left( \frac{\pi}{4} + x \right) dx\]
\[\text{Now, integrating the second term by parts, we get}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2}\left\{ \left[ \frac{1}{2} e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi + \frac{1}{2} \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \right\}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4} \left[ e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4}I\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ e^{2\pi} \sin\left( \pi + \frac{\pi}{4} \right) - \sin\left( \frac{\pi}{4} \right) \right] - \frac{1}{4}\left[ e^{2\pi} \cos\left( \pi + \frac{\pi}{4} \right) - \cos\left( \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right] - \frac{1}{4}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right]\]
\[ \Rightarrow \frac{5}{4}I = - \frac{1}{2\sqrt{2}} e^{2\pi} - \frac{1}{2\sqrt{2}} + \frac{1}{4\sqrt{2}} e^{2\pi} + \frac{1}{4\sqrt{2}}\]
\[ \Rightarrow I = - \frac{1}{5\sqrt{2}}\left( e^{2\pi} + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
`int x^3/(x + 1)` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.