मराठी

∫ π 0 E 2 X ⋅ Sin ( π 4 + X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

उत्तर

\[Let\ I = \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \]
\[\text{Integrating by parts, we get}\]
\[I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2} \int_0^\pi e^{2x} \cos \left( \frac{\pi}{4} + x \right) dx\]
\[\text{Now, integrating the second term by parts, we get}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2}\left\{ \left[ \frac{1}{2} e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi + \frac{1}{2} \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \right\}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4} \left[ e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4}I\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ e^{2\pi} \sin\left( \pi + \frac{\pi}{4} \right) - \sin\left( \frac{\pi}{4} \right) \right] - \frac{1}{4}\left[ e^{2\pi} \cos\left( \pi + \frac{\pi}{4} \right) - \cos\left( \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right] - \frac{1}{4}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right]\]
\[ \Rightarrow \frac{5}{4}I = - \frac{1}{2\sqrt{2}} e^{2\pi} - \frac{1}{2\sqrt{2}} + \frac{1}{4\sqrt{2}} e^{2\pi} + \frac{1}{4\sqrt{2}}\]
\[ \Rightarrow I = - \frac{1}{5\sqrt{2}}\left( e^{2\pi} + 1 \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 53 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


`int x^3/(x + 1)` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×