Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} d x . \]
\[Let\ \tan^{- 1} x = t . Then\, \frac{1}{1 + x^2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x\ = 1\, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \sqrt{t} dt\]
\[ \Rightarrow I = \left[ \frac{2 t^\frac{3}{2}}{3} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{2}{3} \left( \frac{\pi}{4} \right)^\frac{3}{2} \]
\[ \Rightarrow I = \frac{1}{12} \pi^\frac{3}{2} \]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If f(2a − x) = −f(x), prove that
`int_0^(2a)f(x)dx`
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.