Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = 2, f\left( x \right) = x^2 + x, h = \frac{2 - 0}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_0^2 \left( x^2 + x \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 0 \right) + \left( h^2 + h \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)^2 h^2 + h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \left( 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right) + h\left\{ 1 + 2 + 3 . . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ \frac{2\left( n - 1 \right)\left( 2n - 1 \right)}{3n} + n - 1 \right]\]
\[ = \lim_{n \to \infty} 2\left[ \frac{2}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) + 1 - \frac{1}{n} \right]\]
\[ = \frac{8}{3} + 2\]
\[ = \frac{14}{3}\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Prove that:
Solve each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is