मराठी

3 ∫ 1 ( 2 X 2 + 5 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
बेरीज

उत्तर

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
 

\[\text{Here, }a = 1, b = 3, f\left( x \right) = 2 x^2 + 5x, h = \frac{3 - 1}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_1^3 \left( 2 x^2 + 5x \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 1 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 2 + 5 \right) + \left\{ 2 \left( 1 + h \right)^2 + 5\left( 1 + h \right) \right\} + . . . . . . . . . . . . . . . + \left\{ 2 \left( 1 + \left( n - 1 \right)h \right)^2 + 5\left( 1 + \left( n - 1 \right)h \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2\left\{ 1^2 + \left( 1 + h \right)^2 + . . . . . . . . . . . . + \left\{ 1 + \left( n - 1 \right)h \right\}^2 \right\} + 5\left\{ 1 + \left( 1 + h \right) + \left( 1 + 2h + . . . . . . . . + \left( 1 + \left( n - 1 \right)h \right) \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + 2 h^2 \left( 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right) + 4h\left\{ 1 + 2 + . . . . . . + \left( n - 1 \right) \right\} + 5n + 5h\left\{ 1 + 2 + . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 7n + 2 h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 9h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ 7n + \frac{4\left( n - 1 \right)\left( 2n - 1 \right)}{3n} + 9n - 9 \right]\]
\[ = \lim_{n \to \infty} 2\left[ 16 + \frac{4}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) - \frac{9}{n} \right]\]
\[ = 32 + \frac{16}{3}\]
\[ = \frac{112}{3}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.6 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.6 | Q 32 | पृष्ठ १११

संबंधित प्रश्‍न

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_1^2 x^2 dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×