मराठी

3 ∫ 0 3 X + 1 X 2 + 9 D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

पर्याय

  • \[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{2} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{6} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{3} + \log\left( 2\sqrt{2} \right)\]

MCQ

उत्तर

\[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]

\[\text{We have}, \]
\[I = \int_0^3 \frac{3x + 1}{x^2 + 9} d x\]
\[I = \int_0^3 \frac{3x}{x^2 + 9}dx + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ I_1 = \int_0^3 \frac{3x}{x^2 + 9}dx and I_2 = \int_0^3 \frac{1}{x^2 + 9}dx\]
\[\text{Putting} x^2 + 9 = t in I_1 \]
\[ \Rightarrow 2x\ dx = dt\]
\[ \Rightarrow x\ dx = \frac{dt}{2}\]
\[When\ x \to 0; t \to 9\]
\[and\ x \to 3; t \to 18\]
\[ \therefore I = \int_9^{18} \frac{3 dt}{2 t} + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ = \frac{3}{2} \int_9^{18} \frac{dt}{t} + \int_0^3 \frac{1}{x^2 + 3^2}dx\]
\[ = \frac{3}{2} \left[ \log\left( t \right) \right]_9^{18} + \frac{1}{3} \left[ \tan^{- 1} \left( \frac{x}{3} \right) \right]_0^3 \]
\[ = \frac{3}{2}\left[ \log18 - \log9 \right] + \frac{1}{3}\left( \frac{\pi}{4} - 0 \right)\]
\[ = \frac{3}{2}\left[ \log\frac{18}{9} \right] + \frac{\pi}{12}\]
\[ = \frac{3}{2}\left[ \log 2 \right] + \frac{\pi}{12}\]
\[ = \log\left( \sqrt{8} \right) + \frac{\pi}{12}\]
\[ = \log\left( 2\sqrt{2} \right) + \frac{\pi}{12}\]
\[ = \frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 16 | पृष्ठ ११८

संबंधित प्रश्‍न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

If n > 0, then Γ(n) is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×