Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
उत्तर
\[\int_0^1 \frac{1 - x}{1 + x} dx\]
\[ = \int_0^1 \frac{1 - x - 1 + 1}{1 + x} d x\]
\[ = \int_0^1 \frac{2 - \left( x + 1 \right)}{1 + x} d x\]
\[ = \int_0^1 \frac{2}{1 + x} - \int_0^1 \frac{1 + x}{1 + x}dx\]
\[ = \int_0^1 \frac{2}{1 + x} - \int_0^1 dx\]
\[ = 2 \left[ \log\left( 1 + x \right) \right]_0^1 - \left[ x \right]_0^1 \]
\[ = 2\log2 - 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Solve each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.