मराठी

Evaluate Each of the Following Integral: ∫ 1 0 X E X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 

बेरीज

उत्तर

\[I = \int_0^1 x e^{x^2} dx\]
\[ = \frac{1}{2} \int_0^1 e^{x^2} 2xdx\]

Put \[x^2 = z\]

\[\Rightarrow 2x\ dx = dz\]

When \[x \to 0, z \to 0\]

When \[x \to 1, z \to 1\]

\[\therefore I = \frac{1}{2} \int_0^1 e^z dz\]
\[ = \frac{1}{2} \left.\times {e^z}\right|_0^1 \]
\[ = \frac{1}{2}\left( e - e^0 \right)\]
\[ = \frac{1}{2}\left( e - 1 \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Very Short Answers [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Very Short Answers | Q 26 | पृष्ठ ११५

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×