Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[I = \int_0^1 x e^{x^2} dx\]
\[ = \frac{1}{2} \int_0^1 e^{x^2} 2xdx\]
Put \[x^2 = z\]
When \[x \to 0, z \to 0\]
When \[x \to 1, z \to 1\]
\[\therefore I = \frac{1}{2} \int_0^1 e^z dz\]
\[ = \frac{1}{2} \left.\times {e^z}\right|_0^1 \]
\[ = \frac{1}{2}\left( e - e^0 \right)\]
\[ = \frac{1}{2}\left( e - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
If f is an integrable function, show that
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.