हिंदी

Evaluate Each of the Following Integral: ∫ 1 0 X E X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 

योग

उत्तर

\[I = \int_0^1 x e^{x^2} dx\]
\[ = \frac{1}{2} \int_0^1 e^{x^2} 2xdx\]

Put \[x^2 = z\]

\[\Rightarrow 2x\ dx = dz\]

When \[x \to 0, z \to 0\]

When \[x \to 1, z \to 1\]

\[\therefore I = \frac{1}{2} \int_0^1 e^z dz\]
\[ = \frac{1}{2} \left.\times {e^z}\right|_0^1 \]
\[ = \frac{1}{2}\left( e - e^0 \right)\]
\[ = \frac{1}{2}\left( e - 1 \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Very Short Answers [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Very Short Answers | Q 26 | पृष्ठ ११५

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^2 \left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×