Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[I = \int_0^1 x e^{x^2} dx\]
\[ = \frac{1}{2} \int_0^1 e^{x^2} 2xdx\]
Put \[x^2 = z\]
When \[x \to 0, z \to 0\]
When \[x \to 1, z \to 1\]
\[\therefore I = \frac{1}{2} \int_0^1 e^z dz\]
\[ = \frac{1}{2} \left.\times {e^z}\right|_0^1 \]
\[ = \frac{1}{2}\left( e - e^0 \right)\]
\[ = \frac{1}{2}\left( e - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.