हिंदी

∫ π 2 0 Cos 2 X 1 + 3 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
योग

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3\left( 1 - \cos^2 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{4 - 3 \cos^2 x}dx\]
\[ = - \frac{1}{3} \int_0^\frac{\pi}{2} \frac{4 - 3 \cos^2 x - 4}{4 - 3 \cos^2 x}dx\]

\[= - \frac{1}{3} \int_0^\frac{\pi}{2} dx + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{1}{4 - 3 \cos^2 x}dx\]
\[ = \left.- \frac{1}{3} x\right|_0^\frac{\pi}{2} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \sec^2 x - 3}dx ..............\left( \text{Dividing numerator and denominator by} \cos^2 x \right)\]
\[ = - \frac{1}{3}\left( \frac{\pi}{2} - 0 \right) + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4\left( 1 + \tan^2 x \right) - 3}dx\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \tan^2 x + 1}dx\]
Put tanx = z
\[\therefore \sec^2 xdx = dz\]
When
\[x \to 0, z \to 0\]
When
\[x \to \frac{\pi}{2}, z \to \infty\]
\[\therefore I = - \frac{\pi}{6} + \frac{4}{3} \int_0^\infty \frac{dz}{4 z^2 + 1}\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\infty \frac{dz}{\left( 2z \right)^2 + 1}\]
\[ = \left.- \frac{\pi}{6} + \frac{4}{3} \times \frac{\tan^{- 1} 2z}{2}\right|_0^\infty \]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \frac{\pi}{2} - 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{\pi}{3}\]
\[ = \frac{\pi}{6}\]
shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 40 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


`int_0^(2a)f(x)dx`


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×