Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3\left( 1 - \cos^2 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{4 - 3 \cos^2 x}dx\]
\[ = - \frac{1}{3} \int_0^\frac{\pi}{2} \frac{4 - 3 \cos^2 x - 4}{4 - 3 \cos^2 x}dx\]
\[ = \left.- \frac{1}{3} x\right|_0^\frac{\pi}{2} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \sec^2 x - 3}dx ..............\left( \text{Dividing numerator and denominator by} \cos^2 x \right)\]
\[ = - \frac{1}{3}\left( \frac{\pi}{2} - 0 \right) + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4\left( 1 + \tan^2 x \right) - 3}dx\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \tan^2 x + 1}dx\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\infty \frac{dz}{\left( 2z \right)^2 + 1}\]
\[ = \left.- \frac{\pi}{6} + \frac{4}{3} \times \frac{\tan^{- 1} 2z}{2}\right|_0^\infty \]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \frac{\pi}{2} - 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{\pi}{3}\]
\[ = \frac{\pi}{6}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Solve each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1