Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = 2, f\left( x \right) = x^2 + 2x + 1, h = \frac{2 - 0}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_0^2 \left( x^2 + 2x + 1 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 0 + 1 \right) + \left( h^2 + 2h + 1 \right) + . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)^2 h^2 + 2\left( n - 1 \right)h + 1 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \left( 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right) + 2h\left\{ 1 + 2 + . . . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 2h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ n + \frac{2\left( n - 1 \right)\left( 2n - 1 \right)}{3n} + 2n - 2 \right]\]
\[ = \lim_{n \to \infty} 2\left\{ 3 + \frac{2}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) - \frac{2}{n} \right\}\]
\[ = 6 + \frac{8}{3}\]
\[ = \frac{26}{3}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.