Advertisements
Advertisements
प्रश्न
उत्तर
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x \sin^2 x}}dx\]
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx\]
\[ = - \frac{\pi}{2} \times 2 \int_0^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx .................\left[ f\left( - x \right) = \sqrt{\cos\left( - x \right)}\left| \sin\left( - x \right) \right| = \sqrt{\cos x}\left| - \sin x \right| = \sqrt{\cos x}\left| \sin x \right| = f\left( x \right) \right]\]
\[ = - \pi \int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{\cos x}\left( 1 - \cos^2 x \right)}dx\]
\[ = 2\pi \int_1^0 \frac{dz}{1 - z^4}\]
\[ = 2\pi \int_1^0 \frac{dz}{\left( 1 - z \right)\left( 1 + z \right)\left( 1 + z^2 \right)}\]
\[ \Rightarrow 1 = A\left( 1 + z \right)\left( 1 + z^2 \right) + B\left( 1 - z \right)\left( 1 + z^2 \right) + \left( Cz + D \right)\left( 1 - z \right)\left( 1 + z \right)\]
\[1 = A + B + D\]
\[ \Rightarrow D = 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2}\]
\[ \Rightarrow \frac{1}{4} - \frac{1}{4} + C = 0\]
\[ \Rightarrow C = 0\]
\[ = 2\pi \int_1^0 \frac{\frac{1}{4}}{1 - z}dz + 2\pi \int_1^0 \frac{\frac{1}{4}}{1 + z}dz + 2\pi \int_1^0 \frac{\frac{1}{2}}{1 + z^2}dz\]
\[ = \left.\frac{2\pi}{4} \times \frac{\log\left( 1 - z \right)}{- 1}\right|_1^0 + \left.\frac{2\pi}{4} \times \log\left( 1 + z \right)\right|_1^0 + \left.\frac{2\pi}{2} \times \tan^{- 1} z\right|_1^0 \]
\[ = - \frac{\pi}{2}\left( \log1 - \log0 \right) + \frac{\pi}{2}\left( \log1 - \log2 \right) + \pi\left( \tan^{- 1} 0 - \tan^{- 1} 1 \right)\]
\[ = - \frac{\pi}{2}\left[ 0 - \left( - \infty \right) \right] + \frac{\pi}{2}\left( 0 - \log2 \right) + \pi\left( 0 - \frac{\pi}{4} \right)\]
\[ = - \infty - \frac{\pi}{2}\log2 - \frac{\pi^2}{4}\]
\[ = - \infty\]
Notes
The answer does not matches with the answer provided for the question.
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.