हिंदी

∫ π 2 − π 2 − π 2 √ Cos X Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]
योग

उत्तर

\[Let I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x \sin^2 x}}dx\]
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx\]
\[ = - \frac{\pi}{2} \times 2 \int_0^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx .................\left[ f\left( - x \right) = \sqrt{\cos\left( - x \right)}\left| \sin\left( - x \right) \right| = \sqrt{\cos x}\left| - \sin x \right| = \sqrt{\cos x}\left| \sin x \right| = f\left( x \right) \right]\]
\[= - \pi \int_0^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\sin x}dx ...................\left( \left| \sin x \right| = \sin x, 0 \leq x \leq \frac{\pi}{2} \right)\]
\[ = - \pi \int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{\cos x}\left( 1 - \cos^2 x \right)}dx\]
Put `cosx = z^2`
\[\therefore - \sin x\ dx = 2zdz\]
When
\[x \to 0, z \to 1\]
When
\[x \to \frac{\pi}{2}, z \to 0\]
\[\therefore I = 2\pi \int_1^0 \frac{zdz}{z\left( 1 - z^4 \right)}\]
\[ = 2\pi \int_1^0 \frac{dz}{1 - z^4}\]
\[ = 2\pi \int_1^0 \frac{dz}{\left( 1 - z \right)\left( 1 + z \right)\left( 1 + z^2 \right)}\]
Now,
\[\frac{1}{\left( 1 - z \right)\left( 1 + z \right)\left( 1 + z^2 \right)} = \frac{A}{1 - z} + \frac{B}{1 + z} + \frac{Cz + D}{1 + z^2}\]
\[ \Rightarrow 1 = A\left( 1 + z \right)\left( 1 + z^2 \right) + B\left( 1 - z \right)\left( 1 + z^2 \right) + \left( Cz + D \right)\left( 1 - z \right)\left( 1 + z \right)\]
Putting z = 1, we get
\[A = \frac{1}{4}\]
Putting z = −1, we get
\[B = \frac{1}{4}\]
Putting z = 0, we get
\[1 = A + B + D\]
\[ \Rightarrow D = 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2}\]
Equating coefficient of z3 on both sides, we get
\[A - B + C = 0\]
\[ \Rightarrow \frac{1}{4} - \frac{1}{4} + C = 0\]
\[ \Rightarrow C = 0\]
\[\therefore I = 2\pi \int_1^0 \frac{dz}{\left( 1 - z \right)\left( 1 + z \right)\left( 1 + z^2 \right)}\]
\[ = 2\pi \int_1^0 \frac{\frac{1}{4}}{1 - z}dz + 2\pi \int_1^0 \frac{\frac{1}{4}}{1 + z}dz + 2\pi \int_1^0 \frac{\frac{1}{2}}{1 + z^2}dz\]
\[ = \left.\frac{2\pi}{4} \times \frac{\log\left( 1 - z \right)}{- 1}\right|_1^0 + \left.\frac{2\pi}{4} \times \log\left( 1 + z \right)\right|_1^0 + \left.\frac{2\pi}{2} \times \tan^{- 1} z\right|_1^0 \]
\[ = - \frac{\pi}{2}\left( \log1 - \log0 \right) + \frac{\pi}{2}\left( \log1 - \log2 \right) + \pi\left( \tan^{- 1} 0 - \tan^{- 1} 1 \right)\]
\[ = - \frac{\pi}{2}\left[ 0 - \left( - \infty \right) \right] + \frac{\pi}{2}\left( 0 - \log2 \right) + \pi\left( 0 - \frac{\pi}{4} \right)\]
\[ = - \infty - \frac{\pi}{2}\log2 - \frac{\pi^2}{4}\]
\[ = - \infty\]
shaalaa.com

Notes

The answer does not matches with the answer provided for the question.

Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.3 | Q 26 | पृष्ठ ५६

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^\infty e^{- x} dx .\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×