हिंदी

2 ∫ 0 ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]
योग

उत्तर

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]

\[\text{Here }a = 0, b = 2, f\left( x \right) = x^2 + 1, h = \frac{2 - 0}{n} = \frac{2}{n}\]

Therefore,

\[I = \int_0^2 \left( x^2 + 1 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 1 \right) + \left( h^2 + 1 \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)^2 h^2 + 1 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ n + \frac{2\left( n - 1 \right)\left( 2n - 1 \right)}{3n} \right]\]
\[ = \lim_{n \to \infty} 2\left\{ 1 + \frac{2}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) \right\}\]
\[ = 2 + \frac{8}{3} = \frac{14}{3}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.6 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.6 | Q 8 | पृष्ठ ११०

संबंधित प्रश्न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

Γ(n) is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×