Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^{2\pi} e^\frac{x}{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ - 2 e^\frac{x}{2} \cos \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} - \int_0^{2\pi} - \frac{2}{2} e^\frac{x}{2} \cos \left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]
\[\text{Again, integrating second term by parts}\]
\[ \Rightarrow I = \left[ - 2 e^\frac{x}{2} \cos \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} + \left\{ \left[ 2 e^\frac{x}{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} - \int_0^{2\pi} \frac{2}{2} e^\frac{x}{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) d x \right\}\]
\[ \Rightarrow I = \left[ - 2 e^\frac{x}{2} \cos \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} + \left[ 2 e^\frac{x}{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} - I\]
\[ \Rightarrow 2I = \frac{2}{\sqrt{2}} e^\pi + \frac{2}{\sqrt{2}} - \frac{2}{\sqrt{2}} e^\pi - \frac{2}{\sqrt{2}} = 0\]
\[ \Rightarrow I = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`