Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
योग
उत्तर
`int_0^oo "e"^(- x/2) x^5 "d"x = (5!)/(1/2)^(5+ 1)`
= `(5!)/(1/2)^6`
= (26)5!
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]
\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]
Evaluate the following integral:
\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]
\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\] is equal to