Advertisements
Advertisements
प्रश्न
विकल्प
0
1
π/2
π/4
उत्तर
π/4
We have
\[ I = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 x} d x . . . . . \left( 1 \right)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 \left( \frac{\pi}{2} - x \right)} d x \]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 x} d x . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + co t^3 x} + \frac{1}{1 + \tan^3 x} \right] d x\]
\[= \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^3 x + 1 + co t^3 x}{\left( 1 + co t^3 x \right)\left( 1 + \tan^3 x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + co t^3 x \tan^3 x} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + 1} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{2 + \tan^3 x + co t^3 x} \right] dx\]
\[ = \int_0^\frac{\pi}{2} [1]dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
Solve each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1