हिंदी

Π / 2 ∫ 0 1 1 + Cot 3 X D X is Equal to (A) 0 (B) 1 (C) π/2 (D) π/4 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

विकल्प

  • 0

  • 1

  • π/2

  • π/4

MCQ

उत्तर

 π/4

 

We have
\[ I = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 x} d x . . . . . \left( 1 \right)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \cot^3 \left( \frac{\pi}{2} - x \right)} d x \]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan^3 x} d x . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + co t^3 x} + \frac{1}{1 + \tan^3 x} \right] d x\]

\[= \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^3 x + 1 + co t^3 x}{\left( 1 + co t^3 x \right)\left( 1 + \tan^3 x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + co t^3 x \tan^3 x} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{1 + \tan^3 x + co t^3 x + 1} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan^3 x + co t^3 x}{2 + \tan^3 x + co t^3 x} \right] dx\]
\[ = \int_0^\frac{\pi}{2} [1]dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 31 | पृष्ठ ११९

संबंधित प्रश्न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×