Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi\ d \phi\]
\[Let\ \sin \phi = t . Then, \cos \phi\ d\phi = dt\]
\[When\ \phi = 0, t = 0\ and\ \phi = \frac{\pi}{2}, t = 1\]
\[Also, \cos^5 \phi = \cos^4 \phi \cos \phi = \left( 1 - \sin^2 \phi \right)^2 \cos \phi\]
\[ \therefore I = \int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi d \phi\]
\[ \Rightarrow I = \int_0^1 \sqrt{t} \left( 1 - t^2 \right)^2 dt\]
\[ \Rightarrow I = \int_0^1 \sqrt{t}\left( 1 + t^4 - 2 t^2 \right) dt\]
\[ \Rightarrow I = \int_0^1 \left( \sqrt{t} + t^\frac{9}{2} - 2 t^\frac{5}{2} \right) dt\]
\[ \Rightarrow I = \left[ \frac{2 t^\frac{3}{2}}{3} + \frac{2 t^\frac{11}{2}}{11} - \frac{4 t^\frac{7}{2}}{7} \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3} + \frac{2}{11} - \frac{4}{7}\]
\[ \Rightarrow I = \frac{64}{231}\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.