हिंदी

Π / 2 ∫ 0 √ Sin ϕ Cos 5 ϕ D ϕ - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 

उत्तर

\[\int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi\ d \phi\]

\[Let\ \sin \phi = t . Then, \cos \phi\ d\phi = dt\]

\[When\ \phi = 0, t = 0\ and\ \phi = \frac{\pi}{2}, t = 1\]

\[Also, \cos^5 \phi = \cos^4 \phi \cos \phi = \left( 1 - \sin^2 \phi \right)^2 \cos \phi\]

\[ \therefore I = \int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi d \phi\]

\[ \Rightarrow I = \int_0^1 \sqrt{t} \left( 1 - t^2 \right)^2 dt\]

\[ \Rightarrow I = \int_0^1 \sqrt{t}\left( 1 + t^4 - 2 t^2 \right) dt\]

\[ \Rightarrow I = \int_0^1 \left( \sqrt{t} + t^\frac{9}{2} - 2 t^\frac{5}{2} \right) dt\]

\[ \Rightarrow I = \left[ \frac{2 t^\frac{3}{2}}{3} + \frac{2 t^\frac{11}{2}}{11} - \frac{4 t^\frac{7}{2}}{7} \right]_0^1 \]

\[ \Rightarrow I = \frac{2}{3} + \frac{2}{11} - \frac{4}{7}\]

\[ \Rightarrow I = \frac{64}{231}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 11 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×