हिंदी

Π / 2 ∫ 0 Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 

योग

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \cos^4 x\ dx\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \left( \cos^2 x \right)^2 dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\left( 1 + \cos 2x \right)^2}{4} dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( 1 + \cos^2 2x + 2 \cos 2x \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( 1 + 2 \cos 2x + \frac{1 + \cos 4x}{2} \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( \frac{3 + 4 \cos 2x + \cos 4x}{2} \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \left[ \frac{3x}{2} + \frac{2 \sin 2x}{2} + \frac{\sin 4x}{8} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{4}\left[ \frac{3\pi}{4} + 0 \right]\]
\[ \Rightarrow I = \frac{3\pi}{16}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 22 | पृष्ठ १६

संबंधित प्रश्न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following:

Γ(4)


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×