Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \cos^4 x\ dx\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \left( \cos^2 x \right)^2 dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\left( 1 + \cos 2x \right)^2}{4} dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( 1 + \cos^2 2x + 2 \cos 2x \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( 1 + 2 \cos 2x + \frac{1 + \cos 4x}{2} \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \int_0^\frac{\pi}{2} \left( \frac{3 + 4 \cos 2x + \cos 4x}{2} \right) dx\]
\[ \Rightarrow I = \frac{1}{4} \left[ \frac{3x}{2} + \frac{2 \sin 2x}{2} + \frac{\sin 4x}{8} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{4}\left[ \frac{3\pi}{4} + 0 \right]\]
\[ \Rightarrow I = \frac{3\pi}{16}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int x^3/(x + 1)` is equal to ______.