Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
विकल्प
- \[\frac{1}{3} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
- \[\frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
- \[\sqrt{3} \tan^{- 1} \left( \sqrt{3} \right)\]
- \[2\sqrt{3} \tan^{- 1} \sqrt{3}\]
उत्तर
\[\text{We have}, \]
\[I = \int_0^\frac{\pi}{2} \frac{1}{2 + \cos x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{2 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{2 + 2 \tan^2 \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{3 + \tan^2 \frac{x}{2}}dx\]
\[\text{Putting} \tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[When, x \to 0; t \to 0\]
\[and x \to \frac{\pi}{2}; t \to 1\]
\[ \therefore I = \int_0^1 \frac{2}{3 + t^2}dt\]
\[ = 2 \int_0^1 \frac{1}{\left( \sqrt{3} \right)^2 + t^2}dt\]
\[ = \frac{2}{\sqrt{3}} \left[ \tan^{- 1} \frac{t}{\sqrt{3}} \right]_0^1 \]
\[ = \frac{2}{\sqrt{3}}\left[ \tan^{- 1} \frac{1}{\sqrt{3}} - \tan^{- 1} \frac{0}{\sqrt{3}} \right]\]
\[ = \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`