हिंदी

Π / 2 ∫ 0 1 2 + Cos X D X Equals - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals

विकल्प

  • \[\frac{1}{3} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
  • \[\frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
  • \[\sqrt{3} \tan^{- 1} \left( \sqrt{3} \right)\]

     

  • \[2\sqrt{3} \tan^{- 1} \sqrt{3}\]
MCQ

उत्तर

\[\ \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]

\[\text{We have}, \]

\[I = \int_0^\frac{\pi}{2} \frac{1}{2 + \cos x} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{1}{2 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{2 + 2 \tan^2 \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]

\[ = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{3 + \tan^2 \frac{x}{2}}dx\]

\[\text{Putting} \tan \frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]

\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]

\[When, x \to 0; t \to 0\]

\[and x \to \frac{\pi}{2}; t \to 1\]

\[ \therefore I = \int_0^1 \frac{2}{3 + t^2}dt\]

\[ = 2 \int_0^1 \frac{1}{\left( \sqrt{3} \right)^2 + t^2}dt\]

\[ = \frac{2}{\sqrt{3}} \left[ \tan^{- 1} \frac{t}{\sqrt{3}} \right]_0^1 \]

\[ = \frac{2}{\sqrt{3}}\left[ \tan^{- 1} \frac{1}{\sqrt{3}} - \tan^{- 1} \frac{0}{\sqrt{3}} \right]\]

\[ = \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 9 | पृष्ठ ११७

संबंधित प्रश्न

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×