Advertisements
Advertisements
प्रश्न
उत्तर
Let
\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin^2 x + \cos^2 x - 2\sin x\cos x \right)}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin x - \cos x \right)^2}dx\]
Put
\[ = \left.\frac{1}{2 \times 2}\log\left( \frac{2 + z}{2 - z} \right)\right|_{- 1}^0 \]
\[ = \frac{1}{4}\left( \log1 - \log\frac{1}{3} \right)\]
\[ = \frac{1}{4}\left[ 0 - \left( \log1 - \log3 \right) \right]\]
\[ = - \frac{1}{4}\left( 0 - \log3 \right)\]
\[ = \frac{1}{4}\log3\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.