हिंदी

∫ π 4 0 Sin X + Cos X 3 + Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]
योग

उत्तर

Let

\[I = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]
\[= \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( 1 - \sin2x \right)}dx\]

\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin^2 x + \cos^2 x - 2\sin x\cos x \right)}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin x - \cos x \right)^2}dx\]

Put

\[\sin x - \cos x = z\]
\[\therefore \left( \cos x + \sin x \right)dx = dz\]
When
\[x \to 0, z \to - 1 .................\left( z = \sin0 - \cos0 = 0 - 1 = - 1 \right)\]
When
\[x \to \frac{\pi}{4}, z \to 0 .......................\left( z = \sin\frac{\pi}{4} - \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0 \right)\]
\[\therefore I = \int_{- 1}^0 \frac{dz}{2^2 - z^2}\]
\[ = \left.\frac{1}{2 \times 2}\log\left( \frac{2 + z}{2 - z} \right)\right|_{- 1}^0 \]
\[ = \frac{1}{4}\left( \log1 - \log\frac{1}{3} \right)\]
\[ = \frac{1}{4}\left[ 0 - \left( \log1 - \log3 \right) \right]\]
\[ = - \frac{1}{4}\left( 0 - \log3 \right)\]
\[ = \frac{1}{4}\log3\]
shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 31 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_0^\pi \cos x\left| \cos x \right|dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×