मराठी

∫ π 4 0 Sin X + Cos X 3 + Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]
बेरीज

उत्तर

Let

\[I = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]
\[= \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( 1 - \sin2x \right)}dx\]

\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin^2 x + \cos^2 x - 2\sin x\cos x \right)}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin x - \cos x \right)^2}dx\]

Put

\[\sin x - \cos x = z\]
\[\therefore \left( \cos x + \sin x \right)dx = dz\]
When
\[x \to 0, z \to - 1 .................\left( z = \sin0 - \cos0 = 0 - 1 = - 1 \right)\]
When
\[x \to \frac{\pi}{4}, z \to 0 .......................\left( z = \sin\frac{\pi}{4} - \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0 \right)\]
\[\therefore I = \int_{- 1}^0 \frac{dz}{2^2 - z^2}\]
\[ = \left.\frac{1}{2 \times 2}\log\left( \frac{2 + z}{2 - z} \right)\right|_{- 1}^0 \]
\[ = \frac{1}{4}\left( \log1 - \log\frac{1}{3} \right)\]
\[ = \frac{1}{4}\left[ 0 - \left( \log1 - \log3 \right) \right]\]
\[ = - \frac{1}{4}\left( 0 - \log3 \right)\]
\[ = \frac{1}{4}\log3\]
shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 31 | पृष्ठ ३९

संबंधित प्रश्‍न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int\limits_0^\pi x \sin^3 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_2^3 e^{- x} dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×