Advertisements
Advertisements
प्रश्न
उत्तर
Let
\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin^2 x + \cos^2 x - 2\sin x\cos x \right)}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{4 - \left( \sin x - \cos x \right)^2}dx\]
Put
\[ = \left.\frac{1}{2 \times 2}\log\left( \frac{2 + z}{2 - z} \right)\right|_{- 1}^0 \]
\[ = \frac{1}{4}\left( \log1 - \log\frac{1}{3} \right)\]
\[ = \frac{1}{4}\left[ 0 - \left( \log1 - \log3 \right) \right]\]
\[ = - \frac{1}{4}\left( 0 - \log3 \right)\]
\[ = \frac{1}{4}\log3\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Find: `int logx/(1 + log x)^2 dx`