Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} d\ x . Then, \]
\[I = \int_0^1 \frac{\left( \frac{1}{x^2} - 1 \right)}{\left( x + \frac{1}{x} \right)^2} dx\]
\[Let\ x + \frac{1}{x} = t . Then, 1 - \frac{1}{x^2} dx = dt\]
\[When\ x = 0, t\ = \infty\ and\ x\ = 1, t = 2\]
\[ \therefore I = \int_\infty^2 \frac{- dt}{t^2}\]
\[ \Rightarrow I = \left[ \frac{1}{t} \right]_\infty^2 \]
\[ \Rightarrow I = \frac{1}{2} - 0\]
\[ \Rightarrow I = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
Γ(4)
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`