Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 1, b = 2, f\left( x \right) = x^2 , h = \frac{2 - 1}{n} = \frac{1}{n}\]
Therefore,
\[I = \int_1^2 \left( x^2 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left( 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 1 \right) + \left( h + 1 \right)^2 + . . . . . . . . . . . . . . . + \left( \left( n - 1 \right)h + 1 \right)^2 \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} + 2h\left\{ 1 + 2 + 3 + . . . . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 2h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{1}{n}\left[ n + \frac{\left( n - 1 \right)\left( 2n - 1 \right)}{6n} + n - 1 \right]\]
\[ = \lim_{n \to \infty} \left\{ 2 + \frac{1}{6}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) - \frac{1}{n} \right\}\]
\[ = 2 + \frac{1}{3} = \frac{7}{3}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is