Advertisements
Advertisements
प्रश्न
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
उत्तर
\[\text{Here, }a = 1, b = 3, f\left( x \right) = 2 x^2 + 5x, h = \frac{3 - 1}{n} = \frac{2}{n}\]
Therefore,
\[ \int_1^3 \left( 2 x^2 + 5x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . + f\left( 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 2 + 5 + 2 \left( 1 + h \right)^2 + 5\left( 1 + h \right) + 2 \left( 1 + 2h \right)^2 + 5\left( 1 + 2h \right) + . . . . . . . . . + 2 \left( \left( n - 1 \right)h \right)^2 + 5\left( \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + 2 h^2 \left( 1^2 + 2^2 + . . . . . . . . . . . . . . \left( n - 1 \right)^2 \right) + 4h\left( 1 + 2 + . . . . . . . . . . . . \left( n - 1 \right) \right) + 5n + 5h\left( 1 + 2 + . . . . . . . . . . . . \left( n - 1 \right) \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 7n + 2 h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 9h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to 0 } \left[ 14 + \frac{8}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) + 18\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 14 + \frac{16}{3} + 18\]
\[ = \frac{112}{3}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.