Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{3} \frac{\cos x}{3 + 4 \sin x} d x . \]
\[Let\ \sin\ x\ = t . Then, \cos\ x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{3}, t = \frac{\sqrt{3}}{2}\]
\[ \therefore I = \int_0^\frac{\pi}{3} \frac{\cos x}{3 + 4\sin x} d x\]
\[ = \int_0^\frac{\sqrt{3}}{2} \frac{1}{3 + 4t} d t\]
\[ = \frac{1}{4} \left[ \log \left( 3 + 4t \right) \right]_0^\frac{\sqrt{3}}{2} \]
\[ = \frac{1}{4}\left( \log \left( 3 + 2\sqrt{3} \right) - \log 3 \right)\]
\[ = \frac{1}{4} \log \left( \frac{3 + 2\sqrt{3}}{3} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find: `int logx/(1 + log x)^2 dx`