Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
उत्तर
We have,
\[I = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{\sin x + \cos x} d x ...............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 \left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^2 x}{\cos x + \sin x} dx .................(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\cos^2 x}{\sin x + \cos x} + \frac{\sin^2 x}{\cos x + \sin x} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\sin x + \cos x} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} \right]dx\]
\[= - \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{\tan^2 \frac{x}{2} - 2\tan\frac{x}{2} - 1} dx\]
\[ = - \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{\tan^2 \frac{x}{2} - 2\tan\frac{x}{2} - 1} dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to 1\]
\[\therefore 2I = - 2 \int_0^1 \frac{dt}{t^2 - 2t - 1}\]
\[ \Rightarrow I = - \int_0^1 \frac{dt}{\left( t - 1 \right)^2 - \left( \sqrt{2} \right)^2}\]
\[ = - \frac{1}{2\sqrt{2}} \left[ \log\left| \frac{t - 1 - \sqrt{2}}{t - 1 + \sqrt{2}} \right| \right]_0^1 \]
\[ = - \frac{1}{2\sqrt{2}}\left[ \log\left| - 1 \right| - \log\left| \frac{- 1 - \sqrt{2}}{- 1 + \sqrt{2}} \right| \right]\]
\[ = - \frac{1}{2\sqrt{2}}\left[ \log 1 - \log\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right]\]
\[= - \frac{1}{2\sqrt{2}}\left[ - \log\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right]\]
\[ = \frac{1}{2\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} - 1 \right)\left( \sqrt{2} + 1 \right)} \right]\]
\[ = \frac{1}{2\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)^2}{\left( 2 - 1 \right)} \right]\]
\[ = \frac{1}{2\sqrt{2}}\log \left( \sqrt{2} + 1 \right)^2 \]
\[ = \frac{1}{2\sqrt{2}} \times 2 \log\left( \sqrt{2} + 1 \right)\]
\[ = \frac{1}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is