मराठी

Π / 2 ∫ 0 Cos 2 X Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]

बेरीज

उत्तर

We have,

\[I = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{\sin x + \cos x} d x ...............(1)\]

\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 \left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{\sin^2 x}{\cos x + \sin x} dx .................(2)\]

Adding (1) and (2)

\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\cos^2 x}{\sin x + \cos x} + \frac{\sin^2 x}{\cos x + \sin x} \right]dx\]

\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\sin x + \cos x} \right]dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} \right]dx\]

\[= - \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{\tan^2 \frac{x}{2} - 2\tan\frac{x}{2} - 1} dx\]

\[ = - \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{\tan^2 \frac{x}{2} - 2\tan\frac{x}{2} - 1} dx\]

\[\text{Putting }\tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]

\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \frac{\pi}{2}; t \to 1\]

\[\therefore 2I = - 2 \int_0^1 \frac{dt}{t^2 - 2t - 1}\]

\[ \Rightarrow I = - \int_0^1 \frac{dt}{\left( t - 1 \right)^2 - \left( \sqrt{2} \right)^2}\]

\[ = - \frac{1}{2\sqrt{2}} \left[ \log\left| \frac{t - 1 - \sqrt{2}}{t - 1 + \sqrt{2}} \right| \right]_0^1 \]

\[ = - \frac{1}{2\sqrt{2}}\left[ \log\left| - 1 \right| - \log\left| \frac{- 1 - \sqrt{2}}{- 1 + \sqrt{2}} \right| \right]\]

\[ = - \frac{1}{2\sqrt{2}}\left[ \log 1 - \log\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right]\]

\[= - \frac{1}{2\sqrt{2}}\left[ - \log\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right]\]

\[ = \frac{1}{2\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} - 1 \right)\left( \sqrt{2} + 1 \right)} \right]\]

\[ = \frac{1}{2\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)^2}{\left( 2 - 1 \right)} \right]\]

\[ = \frac{1}{2\sqrt{2}}\log \left( \sqrt{2} + 1 \right)^2 \]

\[ = \frac{1}{2\sqrt{2}} \times 2 \log\left( \sqrt{2} + 1 \right)\]

\[ = \frac{1}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 48 | पृष्ठ १२२

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×