Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
उत्तर
Let
\[I = \int_0^{{\pi}/{4}}\frac{\sin x + \cos x}{16 + 9\sin2x}dx\]
Put – cosx + sinx = t .....(1)
Then,
(sin x + cos x) dx = dt
As, x → 0, t → −1
Also, x → \[\frac{\pi}{4}\] t → 0
Squaring (1) both sides, we get
cos2x + sin2x – 2cosx sinx = t2
⇒ 1 – sin2x = t2
⇒ sin 2x = 1 – t2
Substituting these values, we get
\[I = \int_{- 1}^0 \frac{dt}{16 + 9 \left( 1 - t^2 \right)}\]
\[ = \int_{- 1}^0 \frac{dt}{25 - 9 t^2}\]
\[ = \frac{1}{9} \int_{- 1}^0 \frac{dt}{\left( \frac{5}{3} \right)^2 - t^2}\]
\[ = \frac{1}{9} \left[ \frac{1}{2a}\log \left| \frac{a + t}{a - t} \right| \right]_{- 1}^0 \text { where a } = \frac{5}{3}\]
\[ = \frac{1}{9} \left[ \frac{3}{2\left( 5 \right)}\log \left| \frac{\frac{5}{3} + t}{\frac{5}{3} - t} \right| \right]_{- 1}^0 \]
\[ = \frac{1}{9} \left[ \frac{3}{10}\left\{ \log 1 - \log \frac{1}{4} \right\} \right]^{- 1} \]
\[ = \frac{3}{90}\left( - \log \frac{1}{4} \right) = \frac{1}{30} \log 4\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`